Схема приставки к мультиметру для измерения ксв. Приставки к мультиметру схемы. Проведение замеров индуктивности

Цифровой измерительный прибор в лаборатории радиолюбителя теперь не редкость. Однако не часто им можно измерить параметры конденсаторов и катушек индуктивности, даже если это мультиметр. Описываемая здесь простая приставка предназначена для использования совместно с мультиметрами или цифровыми вольтметрами (например, М-830В, М-832 и им подобными), не имеющими режима измерения параметров реактивных элементов.

Для измерения емкости и индуктивности с помощью несложной приставки использован принцип, подробно описанный в статье А. Степанова "Простой LC-метр" в "Радио" № 3 за 1982 г. Предлагаемый измеритель несколько упрощен (вместо генератора с кварцевым резонатором и декадного делителя частоты применен мультивибратор с переключаемой частотой генерации), но он позволяет с достаточной для практики точностью измерять емкость в пределах 2 пФ...1 мкФ и индуктивность 2 мкГн... 1 Гн. Кроме того, в нем вырабатывается напряжение прямоугольной формы с фиксированными частотами 1 МГц, 100 кГц, 10 кГц, 1 кГц, 100 Гц и регулируемой амплитудой от 0 до 5 В, что расширяет область применения устройства.

Задающий генератор измерителя (рис. 1) выполнен на элементах микросхемы DD1 (КМОП), частоту на его выходе изменяют с помощью переключателя SA1 в пределах 1 МГц - 100 Гц, подключая конденсаторы С1-С5. С генератора сигнал поступает на электронный ключ, собранный на транзисторе VT1. Переключателем SA2 выбирают режим измерения "L" или "С". В показанном на схеме положении переключателя приставка измеряет индуктивность. Измеряемую катушку индуктивности подключают к гнездам Х4, Х5, конденсатор - к ХЗ, Х4, а вольтметр - к гнездам Х6, Х7.

При работе вольтметр устанавливают в режим измерения постоянного напряжения с верхним пределом 1 - 2В. Следует учесть, что на выходе приставки напряжение изменяется в пределах 0... 1 В. На гнездах Х1, Х2 в режиме измерения емкости (переключатель SA2 - в положении "С") присутствует регулируемое напряжение прямоугольной формы. Его амплитуду можно плавно изменять переменным резистором R4.

Питается приставка от батареи GB1 с напряжением 9 В ("Корунд" или аналогичные ей) через стабилизатор на транзисторе VT2 и стабилитроне VD3.

Микросхему К561ЛА7 можно заменить на К561ЛЕ5 или К561ЛА9 (исключив DD1.4), транзисторы VT1 и VT2-на любые маломощные кремниевые соответствующей структуры, стабилитрон VD3 заменим на КС156А, КС168А. Диоды VD1, VD2 - любые точечные германиевые, например, Д2, Д9, Д18. Переключатели желательно использовать миниатюрные.

Корпус прибора - самодельный или готовый подходящих размеров. Монтаж деталей (рис. 2) в корпусе - навесной на переключателях, резисторе R4 и гнездах. Вариант внешнего вида показан на рисунке. Разъемы ХЗ-Х5 - самодельные, изготовлены из листовой латуни или меди толщиной 0,1...0,2 мм, конструкция их понятна из рис. 3. Для подключения конденсатора или катушки необходимо ввести выводы детали до упора в клиновидный зазор пластин; этим достигается быстрая и надежная фиксация выводов.

Налаживание прибора производят с помощью частотомера и осциллографа. Переключатель SA1 переводят в верхнее по схеме положение и подбором конденсатора С1 и резистора R1 добиваются частоты 1 МГц на выходе генератора. Затем переключатель последовательно переводят в последующие положения и подбором конденсаторов С2 - С5 устанавливают частоты генерации 100 кГц, 10 кГц, 1 кГц и 100 Гц. Далее осциллограф подключают к коллектору транзистора VT1, переключатель SA2 - в положении измерения емкости. Подбором резистора R3 добиваются формы колебаний, близкой к меандру на всех диапазонах. Затем переключатель SA1 снова устанавливают в верхнее по схеме положение, к гнездам Х6, Х7 подключают цифровой или аналоговый вольтметр, а к гнездам ХЗ, Х4 - образцовый конденсатор емкостью 100 пф. Подстройкой резистора R7 добиваются показаний вольтметра 1 В. Потом переводят переключатель SA2 в режим измерения индуктивности и к гнездам Х4, Х5 подключают образцовую катушку с индуктивностью 100 мкГн, резистором R6 устанавливают показания вольтметра, также равные 1 В.

На этом настройка прибора заканчивается. На остальных диапазонах точность показаний зависит только от точности подбора конденсаторов С2 -С5. От редакции. Налаживание генератора лучше начать с частоты 100 Гц, которую устанавливают подбором резистора R1, конденсатор С5 не подбирают. Следует помнить, что конденсаторы СЗ - С5 должны быть бумажными или, что лучше, метаплопленочными (К71, К73, К77, К78). При ограниченных возможностях в подборе конденсаторов можно использовать и переключение секцией SA1.2 резисторов R1 и их подбор, а число конденсаторов надо уменьшить до двух (С1, СЗ). Номиналы сопротивлений резисторов составят в этом случае 4.7, 47, 470 кОм.

Радио 12-98

Список радиоэлементов

Обозначение Тип Номинал Количество Примечание Магазин Мой блокнот
DD1 Микросхема К561ЛА7 1 В блокнот
VT1 Биполярный транзистор

КТ361Г

1 В блокнот
VT2 Биполярный транзистор

КТ315Г

1 В блокнот
VD1, VD2 Диод

Д2Б

2 В блокнот
VD3 Стабилитрон

КС162А

1 В блокнот
С1 Конденсатор 100 пФ 1 В блокнот
С2, С7 Конденсатор 1000 пФ 2 В блокнот
С3 Конденсатор 0.01 мкФ 1 В блокнот
С4 Конденсатор 0.1 мкФ 1 В блокнот
С5, С6 Конденсатор 1 мкФ 2 В блокнот
С8, С9 Электролитический конденсатор 100 мкФ 10 В 2 В блокнот
R1 Резистор

4.7 кОм

1 В блокнот
R2, R3, R5 Резистор

470 Ом

3 В блокнот
R4 Переменный резистор 470 Ом 1

В настоящее время практически все радиолюбители имеют в своем распоряжении какие-нибудь мульти- метры. Чаще всего, это недорогие китайские приборы "серии 830". В частности, у меня давно и успешно эксплуатируется тестер "DT -830B ". Этот прибор по многим параметрам хорош для радиолюбительской практики, но не предназначен для измерения индуктивности. Не так уж часто, но такая потребность воз­никает. Именно поэтому вызвала интерес читателей статья по его доработке.

Получив журнал, стал разби­раться со схемой и я. В процессе анализа возникли замечания. Мик­росхема DA 1 типа МС34063 дав­но распространена за рубежом. Ее можно купить и на отечественных радиорынках по вполне приемле­мой цене, но, как мне кажется, ее применение приводит к неоправ­данному усложнению схемы при­ставки для измерения индуктивно­сти. Вполне достаточно восполь­зоваться более распространенной в радиолюбительской практике микросхемой интегрального ста­ билизатора напряжения, напри­мер, 78L 05. Тогда отпадет необхо­димость применения дефицитного низкоомного резистора на 0,33 Ом (R 1), диода Шоттки (VD 1 1N 5819) и малогабаритных дросселей (L 1, L 2).

Триггер Шмитта DD1.1 использо­ван в схеме генератора импульсов. Элемент DD1 .2 этой же микросхе­мы предназначен для согласования генератора и его нагрузки (R5, Lx). В статье предлагалось подавать на­пряжение с измеряемой индуктив­ности Lx на вход мультиметра "М830В" через развязывающие кас­кады на элементах DD1.3 и DD1.4, включенные последовательно. Учи­тывая, что входное сопротивление использованного мультиметра "М830" и аналогичных не менее 1 МОм, более целесообразно изменить схе­му (рис.1).

Теперь сигнал с измеряемой ин­дуктивности Lx подается на милли­вольтметр РА1 через однополупериодный выпрямитель на VD 1. Посто­янное напряжение на R4 и С2 зави­сит от напряжения на Lx. Для умень­шения влияния напряжения пита­ния микросхемы DD1 на точность измерений в схеме применен интегральный стабилизатор напряжения DA1 типа 78L05. В крайнем случае, вполне до­пустимо вообще ограничиться параметрическим стабилиза­тором напряжения, например, стабилитроном КС156А. Эле­менты DD1 .2.. .DD1 .4 включе­ны параллельно для умощнения выхода генератора DD1 .1 перед подачей сигнала с него на низкоомную нагрузку (R2, Lx).

Резисторы R3 и R4 образуют де­литель напряжения. Подбором со­противления R3 можно добиться того, что показания милливольтмет­ра РА1 численно будут соответство­вать величине индуктивности Lx в микрогенри. К сожалению, данная схема за счет нелинейности вольт - амперной характеристики полупро­водникового диода VD1 обуславли­вает довольно значительную по­грешность измерения индуктивнос­ти. Изменением номинала R3 при настройке калибруют устройство в одной точке (при конкретном значе­нии Lx). В качестве контрольных можно использовать промышлен­ные дроссели ДМ (ДПМ) с 5% до­пуском.

Доработанная приставка собра­на на печатной плате, чертеж ко­торой и расположение радиоком­понентов приведены на рис.2, а на рис.3 - внешний вид изготовлен­ной платы.

При экспериментах выявилась интересная особенность схемы. При макетировании диод VD1 ошибочно был запаян в печатную пла+у "наоборот" (в про­тивоположной указан­ной на рис.1 полярнос­ти), а схема работала! Впоследствии поляр­ность диода была изме­нена, и при этом схема тоже работала! При­шлось решать: - "А как надо?". Оказалось, что на измеритель надо подавать отри­цательные полуволны переменного напряжения, возникающие на изме­ряемой индуктивности Lx при ее ударном возбуждении положитель­ными импульсами с генератора. Только при таком включении диода VD 1 показания милливольтметра РА1 будут равны нулю, если к при­бору не подключена измеряемая индуктивность.

Вам предложена приставка-металлоискатель к мультиметру типа DT-832 (или аналогичного), представляющая собой высококачественный генератор с объёмным контуром. Его можно его использовать в качестве достаточно чувствительного металлоискателя, способного обнаружить пятирублёвую монету на глубине более 10 см, а ведро или крышку люка на глубине полутора метра.

Принципиальная схема приставки показана на рисунке. Её задача в преобразовании степени воздействия на контур L1-С2 металлического предмета в постоянное напряжение на конденсаторе C3. Это напряжение измеряется мультиметром, и по его показаниям определяется наличие металлического предмета

Основа приставки ВЧ генератор на транзисторе VT1.Величина ПОС, приводящей к запуску генератора зависит от сопротивления резистора R1 (это резистор подстроечный). При помощи регулировки этого резистора генератор устанавливается в такой режим, когда он очень сильно зависит от параметров окружающей контур среды. А это приводит к изменению глубины возбуждения генератора от изменения параметров окружающей контур среды, что, в свою очередь, приводит к изменению тока, потребляемого генератором. Что, по закону Ома, приводит к изменению напряжения на генераторе, которое изменяется мультиметром.
К сожалению, такой способ не позволяет различать цветные и чёрные металлы.

Питается приставка от того же источника, что и мультиметр (для её подключения нужно припаять к колодки батареи два проводника разного цвета, которые выводить через щель между корпусом мультиметра и крышкой, либо установить на корпусе малогабаритный трехпроходной разъём) Измеряемое напряжение подается с точки соединения резисторов R1 и R2 на вход для измерения постоянного напряжения.

Контурная катушка имеет диаметр около 120 мм. Каркасом катушки служит круглый бокс для десяти компакт-дисков. Обмотка состоит из 250 витков провода диаметром 0.23мм (или около того), с отводом от 150-го (считая от коллектора VT1).Обмотку нужно уложить виток к витку, а затем, закрепить при помощи скотч-ленты. Катушка закреплена посредине на круглом корпусе, роль которого выполняет круглый пластмассовый пенал для карандашей. В этом пенале расположены все детали генератора. С мультиметром приставка связана трехпроходным экранированным кабелем.

Для обеспечения стабильности работы построечный резистор R1 желательно должен быть многооборотным.
Конденсаторы должны быть как можно более стабильными, использовать электролитические на месте C3 и C4 не рекомендуется из-за их нестабильности.
Транзистор, желательно выбрать с коэффициентом передачи не ниже 100.Транзистор может быть любой кремниевый общего применения, но удовлетворяющий этому требованию.
Налаживание состоит в следующем. Установите R1 в положение максимального сопротивления. Затем уменьшайте медленно сопротивление резистора и следите за показаниями прибора (имеются в виду абсолютные показания, а не по модулю, поскольку мультиметр будет показывать как отрицательные, так и положительные значения напряжения). Напряжение должно постепенно увеличиваться, а затем начать падать. С этого момента внимательно! Продолжая уменьшать сопротивление R1 найдите момент, когда показания прибора снова начнут расти. Затем, при дальнейшем уменьшении R1 они опять начнут падать. Теперь, вернитесь назад и установите R1 примерно в среднее положение между моментом, с которого показания растут, и с которого они начинают падать. Это и будет точка максимальной чувствительности прибора.

В процессе эксплуатации эту калибровку нужно периодически повторять, так как она будет сбиваться от понижения напряжения источника питания от его разряда.
Получить значительно большую чувствительность и стабильность можно, если питать приставку от отдельного стабилизированного источника постоянного тока напряжением 6-7V(от отдельной аналогичной батареи, но через стабилизатор).Использовать для питания приставки сетевой источник нежелательно, так как через него проникают различные сетевые помехи и наводки, которые, в общем, снижают чувствительность.

Если поэкспериментировать с числом витков катушки, положением отвода и ёмкостями конденсаторов C1 и C2,можно достигнуть значительной чувствительности. Параметры этих настроек сильно зависят от параметров используемого транзистора. Например, можно настроить прибор так, что пятирублёвую монету он будет чувствовать с 15-17 см.
Налаживая прибор, держитесь подальше от различных металлических предметов, типа батарей, водопроводных труб, выключите приборы, могущие создавать помехи (персональный компьютер, например).

Список радиоэлементов

Обозначение Тип Номинал Количество Примечание Магазин Мой блокнот
VT1 Биполярный транзистор

КТ3102Е

1 В блокнот
С1 Конденсатор 0.015 мкФ 1 В блокнот
С2 Конденсатор 0.15 мкФ 1 В блокнот
С3, С4 Конденсатор 2.2 мкФ 2 В блокнот
R1 Подстроечный резистор 10 кОм 1 В блокнот
R2 Резистор

10 кОм

1 В блокнот
R3 Резистор

То, что такой измеритель необходим радиолюбителю не только узнал от других, но и сам прочувствовал, когда взялся ремонтировать старинный усилитель - тут нужно достоверно проверить каждый электролит стоящий на плате и найти пришедший в негодность или произвести 100% их замену. Выбрал проверку. И чуть не купил через интернет разрекламированный приборчик под названием «ESR - mikro». Остановило то, что уж больно здорово хвалили - «через край». В общем, решился на самостоятельные действия. Так как на замахиваться не хотелось - выбрал самую простую, если не сказать примитивную схему, но с очень хорошим (тщательным) описанием. Вник в информацию и имея некоторую склонность к рисованию принялся разводить свой вариант печатной платы. Чтобы помещалась в корпус от толстого фломастера. Не получилось - не все детали входили в планируемый объём. Одумался, нарисовал печатку по образу и подобию авторской, протравил и собрал. Собрать получилось. Всё вышло очень продумано и аккуратно.

Вот только работать пробник не захотел, сколько с ним не бился. А мне не захотелось отступать. Для лучшего восприятия схемы перечертил её на «свой лад». И так «родная» (за две недели мытарств), стала она и более понятной визуально.

Схема ESR метра

А печатную плату доделал по-хитрому. Стала она «двухсторонней» - со второй стороны расположил детали, не уместившиеся на первой. Для простоты решения, возникшего затруднения, разместил их «навесом». Тут не до изящества - пробник нужен.

Протравил печатную плату и запаял детали. Микросхему в этот раз поставил на панельку, для подачи питания приспособил разъем, который можно надёжно укрепить на плате при помощи пайки и корпус в дальнейшем уже можно «вешать» на него. А вот подстроечный резистор, с которым пробник заработал лучше всего, нашёл у себя только такой - далеко не миниатюрный.

Обратная сторона - плод прагматичности и вершина аскетизма. Что-то сказать здесь можно только про щупы, несмотря элементарность исполнения они вполне удобны, а функциональность так вообще выше всяческих похвал - способны на контакт с электролитическим конденсатором любого размера.

Всё поместил в импровизированный корпус, место крепления - резьбовое соединение разъёма питания. На корпус, соответственно пошёл минус питания. То есть он заземлён. Какая ни есть, а защита от наводок и помех. Подстроечник не вошёл, зато всегда «под рукой», будет теперь потенциометром. Вилка от радиотрансляционного динамика, раз и навсегда, позволит избежать путаницы с гнёздами мультиметра. Питание от лабораторного БП, но при помощи персонального провода с вилкой от ёлочной гирлянды.

И оно, это чудо неказистое, взяло и заработало, причём сразу и как надо. И с регулировкой никаких проблем - соответствующий одному ому, один милливольт выставляется легко, примерно в среднем положении регулятора.

А 10 Ом соответствует 49 мВ.

Исправный конденсатор, соответствует примерно 0,1 Ом.

Неисправный конденсатор, соответствует более 10 Ом. С поставленной задачей пробник справился, неисправные электролитические конденсаторы на плате ремонтируемого устройства были найдены. Все подробности относительно этой схемы найдёте в архиве. Максимально допустимые значения ESR для новых электролитических конденсаторов указаны в таблице:

А некоторое время спустя захотелось придать приставке более презентабельный вид, однако усвоенный постулат «лучшее - враг хорошего» трогать его не позволил - сделаю другой, более изящный и совершенный. Дополнительная информация, в том числе и схема исходного прибора, имеется в приложении . Про свои хлопоты и радости поведал Babay .

Обсудить статью ПРИСТАВКА К МУЛЬТИМЕТРУ ESR МЕТР

Принципиальная схема самодельной приставки к мультиметру для измерения частоты в пределах 5Гц-20МГц.

В некоторых цифровых мультиметрах, например, MY64, MY68, М320, M266F имеется встроенная функция измерения частоты, благодаря чему мультиметр может использоваться как цифровой частотомер. К сожалению, недорогие мультиметры обычно могут измерять частоту не выше 2 кГц...1 МГц, кроме того, имеют низкую чувствительность.

Чтобы расширить диапазон измеряемых частот и повысить чувствительность прибора в режиме работы частотомером, можно изготовить несложное устройство на современных КМОП микросхемах.

Схема приставки

На рис. 1 представлена принципиальная схема активного входного щупа-делителя частоты, способного корректно работать в диапазоне входных частот 5 Гц...20 МГц. При построении таких узлов приходится сталкиваться с двумя противоречиями.

Для измерения низких частот устройство должно содержать формирователь сигналов прямоугольной формы из сигналов произвольной формы (компаратор), за которым следует триггер Шмитта.

Иначе частотомер может работать некорректно, из-за затянутых фронтов сигналов могут возникнуть ложные переключения логических элементов, счётчиков - частотомер будет показывать завышенные значения измеряемых частот.

Но формирователь сигналов прямоугольной формы и триггер Шмитта обычно плохо работают на частотах выше единиц...десятков МГц, поэтому в режиме измерения сигналов высоких частот входной сигнал подают на делитель частоты с выхода усилителя-ограничителя.

На вход устройства, о котором пойдёт речь, можно подавать сигнал амплитудой до 300 В при частоте до 30 кГц и амплитудой до 30 В при частоте сигнала 20 МГц (кратковременно) или амплитудой до 15 В, частота 20 МГц, непрерывно. В случае необходимости измерять частоту сигнала большей амплитуды, на вход активного щупа можно подключить дополнительный резистор.

Диоды VD1 - VD8 ограничивают амплитуду входных сигналов до 2 В, защищая VТ1 от пробоя изолятора затвора высоким входным напряжением или статическим электричеством. Таким образом, при измерении частоты сигналов амплитудой до 2 Вольт, щуп имеет входное сопротивление, примерно равное сопротивлению резистора R5 - 1,2 МОм.

Полевой транзистор с изолированным затвором VТ1 усиливает амплитуду входного сигнала примерно в 4 раза. Входная ёмкость щупа определяется ёмкостью монтажа и ёмкостью затвора VТ1, около 7 пФ. Конденсатор СЗ разделительный.

Усилительный каскад на VТ1 получает питание через LC фильтр L1C4.

Рис. 1. Принципиальная схема приставки-делителя к мультиметру для измерения частоты в пределах 5Гц-20МГц.

На высокочастотных транзисторах VТ2 -VТ4 собран предварительный формирователь сигналов прямоугольной формы. Минимальная амплитуда входного сигнала, при которой начинает работать формирователь, около 0,2 В. Для сравнения, мультиметр М320 начинает измерять частоту при амплитуде более 1,1 В. Режим работы формирователя устанавливают подстроечным резистором R16.

Конденсатор С10 повышает усиление каскада на VТЗ, VТ4. Узел на транзисторах VТ2 - VТ4 получает питание через LC фильтр L2C8C11.

С вывода коллектора VТ4 сигнал, формой близкой к прямоугольной, поступает на триггер Шмитта, реализованный на двух логических элементах 2И-НЕ DD1.1, DD1.2 и резисторах R6, R4. Корректирующая цепочка R3, С1 предотвращает ложные срабатывания триггера. Через буферный элемент DD1.3 сигнал прямоугольной формы поступает на вход «+1» двоично-десятичного счётчика DD2.

Счётчик DD2 в этой схеме работает как делитель частоты на 10. Сигнал частотой в 10 раз меньшей снимается не с выходов переноса, выводы 12 или 13, а с выхода «Q4» - вывод 6. Такое решение связано с тем, что сигнал на выводах 12, 13 очень короткий, что может негативно сказаться на работе подключенного к выходу щупа частотомера.

На выходе «Q4» форма сигнала близка к меандру. Резистор R10 и диоды VD9, VD10 защитные.

На логическом элементе DD1.4, ограничительном резисторе R12, диодах VD11, VD12, конденсаторах С9, С16 и красном кристалле светодиода HL1 собран индикатор наличия входного сигнала амплитудой более 0,2 В. При включении питания, HL1 светит зелёным цветом, при подаче на вход устройства входного сигнала цвет свечения HL1 меняется на жёлтый.

Диод VD13 защищает конструкцию от переполюсовки напряжения питания. При напряжении питания 5 В устройство потребляет ток около 12 мА при отсутствии сигнала на входе и около 35 мА при частоте входного сигнала 15 МГц. Для сравнения, аналогичный щуп-делитель частоты на двух ТТЛ микросхемах К155ЛАЗ, К155ИЕ9, собранный четверть века назад, потреблял ток 240 мА.

При напряжении питания 3,3 В верхняя граница измеряемых частот снижается до 4 МГц.

Детали и монтаж

Большинство деталей устройства установлены на монтажной плате размером 124x22 мм, монтаж двусторонний навесной. Общий минусовый провод идёт по бокам с обеих сторон платы по всей ёё длине, через каждые 15...20 мм между продольными шинами общего провода установлены проволочные перемычки, таким образом, топология общего провода напоминает «лесенку».

КМОП микросхемы серии ***74АС*** при напряжении питания 5 В работоспособны на частотах до 120 МГц. В этом устройстве вместо микросхемы IN74AC00N можно применить КР1554ЛАЗ или любую из серий ***74АС00*, ***74НС00*, ***74НСТ00*. Вместо микросхемы IN74AC192 подойдёт КР1554ИЕ6 или любая из серий ***74АС192*, ***74НС192*, ***74НСТ192*.

Для удобства монтажа предпочтительнее устанавливать микросхемы в корпусах DIP. Вместо полевого транзистора КП305Д подойдёт любой из серий КП305, 2П305. На время монтажа обязательно закорачивайте выводы этого транзистора проволочной перемычкой, иначе транзистор будет повреждён.

Резистором R8 устанавливают режим работы этого транзистора, при напряжении питания 5 В на выводе стока нужно установить напряжение 2...3 В относительно общего провода. Чтобы не повредить этот транзистор во время подбора R8 на его место можно установить резистор сопротивлением 1 кОм, к которому потом будет параллельно установлен добавочный резистор. Транзистор КП303И можно заменить на 2П303И, 2П303Д, КП303Д.

При выборе транзистора на место VТ2 учитывайте, что транзисторы серий 2П303, КП303 с буквенными индексами А, Б, В относятся к низкочастотным. Подбором сопротивления резистора R10 устанавливают режим работы этого транзистора. Вход щупа на время подбора сопротивлений резисторов R8, R10 должен быть закорочен.

Транзисторы 2SC9018 можно заменить на любые из SS9018, SS9016, КТ6113. Вместо диодов 1 N914 подойдут любые из 1 N4148, 1SS176, 1SS244, КД503, КД509, КД510, КД521, КД522. Диод 1N5393 можно заменить любым из 1 N5391 - 1 N5399, FR151 - FR157, КД258, КД257, КД226. Двукристальный светодиод L-59SURKNGKW можно заменить любым аналогичным красно-зелёным из серий L-59, L-119, L-239.

Конденсатор С14 любой алюминиевый оксидный или тантало-вый на напряжение не ниже 6 В. Конденсатор С2 высоковольтный керамический. Остальные конденсаторы керамические для навесного и поверхностного монтажа, не экономьте на блокировочных конденсаторах. Резисторы любые малогабаритные соответствующей мощности, в том числе SMD для поверхностного монтажа.

Дроссели готовые малогабаритные промышленного изготовления, намотанные на FI-образных ферритовых сердечниках. Чем больше индуктивность и чем меньше сопротивление обмоток этих дросселей, тем лучше.

Для конструкции использован корпус размерами 180x27x20 мм от генератора сетчатого поля для телевизоров УЛПЦТИ. Корпус частично экранирован самоклеящейся алюминиевой фольгой, электрически соединённой с общим проводом, точка подключения к общему проводу - резистор R5.

Если вам потребуется, чтобы этот щуп-делитель частоты работал на более высоких частотах, то в него необходимо установить дополнительный переключатель, который бы отключал входы DD1.3 от выхода DD1.2 и подключал их к выводу стока VT2. Также может потребоваться установка на место VT2 транзистора с большим начальным током стока.

Установка на место VT2 более высокочастотного транзистора из серий КП307, 2П307 может потребовать установки резистора R10 значительно меньшего сопротивления, что увеличит ток потребления, но также увеличит чувствительность щупа на высоких частотах. При наличии на монтажной плате свободного места, вместо восьми диодов VD1 - VD8, включенных параллельно-последовательно, можно установить 16 таких же диодов, что до 4 В увеличит напряжение, при котором источник сигналов не шунтируется защитными диодами. Выводы этих диодов должны быть как можно короче, чтобы уменьшить индуктивность защитной цепи.

Бутов А.Л.

Литература:

  1. Бутов А.Л. Широкополосной формирователь для частотомера. - РК-2001-5.
  2. Бутов А.Л. Формирователь импульсов прямоугольной формы. - РК-2002-9.
  3. Петропавловский И.И., Прибыльский А.В., Троян А.А., Чувелев В.С. Логические ИС КР1533, КР1554.